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Abstract

Exascale supercomputers have opened the door to dynamical simulations, facilitated

by AI/ML techniques, that model biomolecular motions over unprecedented length and

time scales. This new capability holds the potential to revolutionize our understanding

of fundamental biological processes. Here we report on some of the major advances

that were discussed at a recent CECAM workshop in Pisa, Italy, on the topic, with

a primary focus on atomic-level simulations. First, we highlight examples of current

large-scale biomolecular simulations and the future possibilities enabled by crossing the

exascale threshold. Next, we discuss challenges to be overcome to optimize the usage of

these powerful resources. Finally, we close by listing several grand challenge problems

that could be investigated with this new computer architecture.
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Introduction

The advent of exascale super-computer facilities such as Frontier at the Oak Ridge National

Laboratory USA (accessible to the global research community starting in April, 2023), Au-

rora at the Argonne National Laboratory USA, and JUPITER, coming this year in Jülich,

Germany is providing vast new capabilities for tackling challenging societal problems. These

include drug discovery,1 personalized medicine,2 biotechnology,3 and imaging science.4 Cou-

pled with the exascale machines and advanced simulation methods, the simultaneous growth

of the sciences of big data and artificial intelligence built upon machine learning (AI/ML)

has further propelled the ability to discover informative patterns in massive simulation and

experimental data sets.5,6

Regarding biophysical simulation and modeling, exascale computing enabled by GPU-

acceleration and high-speed interconnects has opened the possibility of large-scale simulations

of biomolecules and their (membrane-bound) assemblies that begin to approach the micron

length scale.7–10 These studies hold the potential to connect specific molecular features to

mechanical and chemical function in the complex environments inside and outside cells.

Two of us (TB and PC) co-organized a CECAMworkshop several months ago on “Biomolec-

ular simulation and machine learning in the exascale era: first applications and perspectives”

(https://www.cecam.org/workshop-details/1224) to survey this exciting topic, with a longer-

term goal of facilitating the transition of biomolecular computing to a growing list of exascale

facilities.

Highly diverse, complementary, and cutting-edge topics included conformational sam-

pling,11,12 protein thermodynamics13 and kinetics,14 drug discovery,15,16 biomachines,17 large

macromolecular complexes such as the nuclear pore complex7 and the ribosome,18 enzyme

catalysis by scalable QM/MMmolecular dynamics algorithms,19 AI/ML techniques for bioin-

formatics20 and simulation,21 and coarse graining approaches.12 In addition, several speakers

from Jülich, Oak Ridge, and elsewhere, rooted in computer science and software engineering,

discussed the core computational challenges and opportunities related to exascale computing
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in biology.22,23

Other recent reviews and perspectives24–27 have discussed extensively the current status

of biomolecular simulation and modeling, including coarse-grained methods.27 Here, we focus

on atomic-level simulations and both the enormous potential and resulting challenges created

by the emergence of exascale computing.

Scaling up biomolecular simulations

The collection of talks at the workshop illustrates just how far the computational modeling

of biomolecules has come in the last few decades. Also apparent is the wide diversity of

the scientific themes. Major progress has been made in terms of both the resolution and

fidelity of the models as well as in the length and time scales accessible. For instance, MD

simulations of single membrane-bound proteins (at the atomic level) were state-of-the-art at

the beginning of the century.28 Such simulations are now routine on small to medium-sized

computer clusters available at most research institutions.

Leadership class HPC offers a major leap in both the resolution of the simulations and

in the system size and duration. For example, Frontier consists of 9,408 compute nodes,

each of which can readily handle about 107 particles at a simulation production rate of

about 3 ns/day. The length scale of a composite particle with this many atoms is on the

order of 50 nm, which is in the size range of a typical virus.9 Exploiting coarse-grained force

fields27,29could expand the domain of applications eventually to small cells over biologically

relevant time scales (Fig. 1). Gaining a deeper understanding of coupled biomolecular pro-

cesses in the dense, crowded intracellular space may ultimately lead to paradigm shifts in

drug design (including the design of drug combinations that can operate at multiple locations

and points in time).

Figure 1 highlights several innovative studies from the last decade made possible by

current HPC systems. Examples of an entire cell organelle (photosynthetic chromatophore
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vesicle)30 and the minimal cell31 are aspirational studies with impressive initial results. We

note the impressive progress in simply building systems as complex as the aerosolized virus,8

the organelle,30 and the minimal cell.31 The minimal cell is currently a coarse-grained model,

with the all atom system expected to be around 6 × 109 atoms. Simulating such a system

to begin to explore basic cellular processes now appears within reach, but with significant

constraints on the accessible time scales (see below). Indeed, an example of MD scaling up

 Neuro-receptor
105 atoms (2019)

      Ribosome 
106 atoms (2013)

     Influenza A 
108 atoms (2022)

 Aerosolized SARS-Cov-2 
     109 atoms (2021)

< 5 PetaFlops 17 PetaFlops 150 PetaFlops

        Minimal cell
     ~6 x109 atoms (?)

 1194 PetaFlops

        HIV 
107 atoms (2013)

Figure 1: Select examples of innovative simulations over the last decade. From left to right:
Neuro-receptor M2 (adapted with permission from Figure 1 of Ref. 32; ©2019, American
Chemical Society); Ribosome (PDB ID 4v6y, Ref. 33); HIV (PDB ID 3j3q, Ref. 34); Influenza
A (image from www.eurekalert.org/multimedia/972194; credit Lorenzo Casalino, Amaro lab;
original figure from Ref. 35, ©2022 American Chemical Society); Aerosolized SARS-Cov-
2 (image from www.eurekalert.org/multimedia/900678; credit #COVIDisAirborne Team;
original figure from Ref. 8, ©2021 Americal Chemical Society); and Minimal cell (adapted
with permission from Figure 1 of Ref. 31; ©Stevens, Grünewald, van Tilburg, König, Gilbert,
Brier, Thornburg, Luthey-Schulten and Marrink. The system comprises 561 × 106 beads,
equivalent to about 6× 109 atoms.) The HIV, Influenza, and SARS-Cov-2 simulations were
performed using the leadership class HPC at ORNL. The compute speeds for the ORNL
machines, including for Frontier, are based on the LINPACK benchmark. Ribosome and
HIV images made using UCSF Chimera36 and structures from the PDB.

to the full Frontier system is an exploratory simulation of bulk water comprising roughly

1011 atoms with a length scale approaching 1 micron and with long-range interactions fully

involved (Hagerty and Asthagiri, unpublished). This length scale is typical for a micro-

organism such as E. Coli. Assuming ideal weak scaling and thus again a simulation timescale

production of 3 ns/day would imply consumption of ∼200,000 node-hours from a large

allocation for a few-nanosecond simulation. These crude estimates provide a glimpse of the

(distant) horizons that are now visible.

Of course many key cellular phenomena occur on a much longer time scale. While there
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is merit in pushing the boundaries of molecular simulations into uncharted territory, it is

important to keep in mind that interesting phenomena such as metabolism and replication

are beyond what can be accessed. This has been discussed in detail in Ref. 26. Diffusion

times in the viscous interior of cells, one of the simpler quantities that can be explored via

simulation, grow quadratically with the distance (or as ∼ N2/3), so the movement of proteins

and nucleic acids between organelles in cells is a major challenge for simulation.

Thus it is clear that simulating the dynamics of a large-scale system on a supercomputer

for a short time, although indicating impressive progress, will not lead to insights into longer

time scale phenomena (from large conformational changes to direct self-assembly that occur

on the microsecond scales or longer11). Again, taking Frontier as an example, it is readily

possible to simulate in less than an hour of real time a system with 106 atoms for 106 time

steps using just 1/4th of the resources per node (Asthagiri, unpublished). This suggests

that a fruitful alternative approach is to examine an ensemble of smaller systems that can

evolve over long time scales on each compute node, thus greatly enhancing the sampling

and reducing uncertainties.37 With 106 − 107 atoms, however, the “smaller” systems above

modeled by a single compute node are already capable of representing viruses.38

The tightly-coupled ensemble computing on a dedicated system like Frontier should be

contrasted with highly distributed computing architectures (such as Folding@home39). The

distributed computing paradigm of course has advantages of its own related to extensibility

and optimal use of idle resources in order to conserve energy. The tightly-coupled nature of an

exascale computer, however, allows for rapid-turnaround feedback both within the evolving

simulation and in coupled interactions with ongoing experiments at remote facilities.

Through specialized ensemble techniques such as Markov State Models,40 these compu-

tational developments create major opportunities for modelling the bio-assembly of large

organized units. Further, many phenomena in biology, including enzyme catalysis, proton

pumping, and electron transfer reactions, require a quantum mechanical treatment necessi-

tating the use of QM/MM methods19 or quantum-based surrogate models.21 Some of them
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have been massively parallelized in order to exploit exascale resources for modeling large sys-

tems.41,42 Finally, while extensive work has gone into optimizing molecular force fields that

mimic the basic interactions between atoms, it is now accepted that electronic polarization

and many-body dispersion forces43 can contribute substantially and can even qualitatively

alter the equilibrium structures and self-assembly dynamics.44 These effects will move to

the fore and require additional capabilities as we attempt to model large assemblies at an

accurate level.45

Integration of AI/ML in biomolecular simulations

A central theme gleaned from the workshop is the entry of AI/ML methods into nearly

every domain of biomolecular simulation. The uses include AI-based structure prediction for

large assemblies,7 methods for increasing the accuracy and efficiency of the simulations via

surrogate models,21 coarse graining,27 and tools for enhancing the sampling of conformational

and other transitions between quasi-stable states.11 Of course, AI/ML is also designed to

find patterns in the massive datasets produced by the large-scale simulations.

The CECAM workshop suggested further ways in which AI/ML will accelerate discov-

ery. As discussed above, a great benefit can be gained by dividing the modeling into a large

ensemble that reduces statistical uncertainties and allows for the increased probability of

sampling rare events. But on leadership-class machines, how to best organize these simula-

tions is not a trivial task. In fact, the space of simulation run variables and parameters is

very large, and a global optimization procedure driven by AI/ML is warranted. Utilization

of AI/ML in this way could be viewed as “AI at the front end” or “computational design”

(along the lines of “experimental design” in engineering systems, etc.46).

Further, methods are under development in which one can imagine high-level pruning or

branching processes that select from emerging results to enhance sampling of the process of

interest. This could be done as the simulations progress in order to minimize uncertainties
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in the simulation outcome (see Ref. 47). This “on the fly” approach may accelerate discovery

significantly. See also Ref. 8 for an example of such AI-guided sampling. Care must be taken

in analyzing the influence of bias in the simulations from such enhanced sampling methods.

To summarize, a central suggestion of this perspective is a unified approach to the integra-

tion of modelling/simulation (ModSim) and AI/ML at all stages of the simulation process.

At the front end, this involves building large biomolecular complexes that provide physically

realistic starting models. Recently proposed Large Language Models (LLMs) will accelerate

the process of generating alternative protein and RNA structures48,49 and predicting func-

tional protein sequences50 in protein design. In addition, AI/ML methods can be used in a

computational design process for the simulations in order to minimize uncertainties of the

simulation results (above). For the simulations themselves, AI/ML methods (deep learning

methods in particular) have been shown to greatly accelerate high-accuracy models gener-

ated from underlying quantum mechanical results via the generation of surrogate models

such as DeePMD.21 Finally, both modern experiments and large-scale simulations produce

vast amounts of data that can be interrogated for patterns that shed light on the key motions

occurring in the biological systems.

In addition, a feedback loop between the evolving simulations and uncertainty measures

can be used to steer the simulations towards more robust and reliable results. The importance

of uncertainty quantification methodologies is receiving extensive attention in the molecular

simulation community.37 Beyond this integration that accelerates simulation efficiency and

convergence, AI/ML methods will also impact the nature of the experiment/theory interac-

tion, discussed below.

Software engineering

Another conclusion from the workshop is the pressing need for greater software portability,

data uniformity and ready access to the research community, and modern visualization and
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analysis tools.22,51 To some extent, the community, like several others, has developed at a

rapid pace with many projects moving in parallel and often independently.

This is a natural progression, but, with the appearance of several exascale centers around

the world, scientific output would be significantly enhanced by more coordinated collective

efforts reminiscent of the Linux operating system development. Of particular focus should be

the development of portable and efficient codes that can be implemented across a wide range

of hardware offerings. Making data and workflows accessible to all users can aid in trans-

parency, reproducibility, and could impact AI/ML methods broadly. A follow-on CECAM

workshop on these topics will take place in May, 2024 (https://www.cecam.org/workshop-

details/1319)

Integration with major experimental facilities

The current explosive growth in computational resources coincides with a rapid development

of advanced light sources,52 neutron scattering facilities,53 (in cell) NMR,54 and cryoEM and

cryo-electron tomography techniques,55,56 all of which generate large datasets. For example,

the LCLS-II free electron X-ray laser facility at SLAC has recently come online, with a nearly

10,000 fold increase in pulse frequency compared to the existing LCLS beamline.52,57 Exascale

computing will play a key role in guiding and analyzing the resulting high fidelity experiments

that hold the potential to reveal biomolecular structure and dynamics, producing “movies”

of complex molecular-level processes in action.

Besides the enhanced pulse frequency of the LCLS-II X-ray free electron laser, an advan-

tage is the ability to perform experiments at room temperature. Thus, realistic sampling

of conformational states and binding events can be expected. A challenge will be dealing

with the “data deluge” that could produce several petabytes of raw data per hour during an

experiment.58 The ability to handle massive datasets is already a feature of leadership-class

(exascale) computing facilities. For example, the short term data storage capacity on the
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Frontier system is 700 petabytes. A bottleneck is the current data transfer rate between fa-

cilities of about 400 gigabits/sec, necessitating some level of data reduction prior to transfer

for real-time analysis.

These discussions foreshadow an evolution towards more tightly coupled experimental,

theoretical, and simulation work that will accelerate the discovery process. One can imagine

ongoing experiments at a light source or a cryoEM facility that produce preliminary results

indicating a conformational transition between two functional states of a protein. Simulta-

neously, a simulation could be ongoing on the exascale super-computer that provides results

related to the same possible transition. An indication of a third conformational state appears

in the experiment, which provides a trigger to initiate further replica exchange simulations at

higher temperatures. A structure similar to the third state seen in the experiment appears in

the simulation, but the detailed agreement with experiment is poor. The experiment/theory

comparison leads to the hypothesis that the charge state of a side-chain is in error in the

computational model. Altering the charge state (or other components of the force field) on

the fly then leads to better agreement with experiment.

Studies of this kind are currently possible through much slower step-by-step feedback

that can take months or years rather than minutes or hours. We see this as the sign of

a new, promising era for the interaction of experiment and theory, producing accelerated

discovery for complex systems.

As sketched above, close coupling of powerful experimental and computational facilities

in real time better leverages the ensemble computing capabilities of dedicated leadership

computing facilities relative to distributed computing architectures such as Folding@home.39

Indeed, efforts are currently underway within the US Department of Energy to develop the

aforementioned tight integration within a larger science ecosystem.
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Conclusions

We are at the threshold of a new era of biomolecular simulation. We can explore the driv-

ing forces for many essential processes performed by large assembled structures that are

the workhorses in biological systems. Prototype systems of this kind include the nuclear

pore complex,15 the ribosome,18,33 large membrane protein complexes,59 microtubules,60

and viruses.8 Outside of the realm of molecular-level biophysical science, how these large

complexes guide the coupled interactions in systems biology will be a further horizon that

will begin to come into focus.

The capabilities that enable the above studies come with significant challenges related to

optimizing and standardizing codes, computational workflows, data handling, and visualiza-

tion. If these challenges are met, molecular dynamics simulations over biologically relevant

timescales to probe key interactions that drive the functioning of organelles or even entire

cells may soon be running on exascale machines. Progress in these directions can be expected

to revolutionize our understanding of fundamental biological processes with applications that

include drug discovery and biotechnology.
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